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A B S T R A C T

The study of crowd dynamics has provided new insights into the understanding of human
collective motion. However, most previous studies treated large-scale crowds as consisting of
isolated individuals, but ignored the fact that pedestrian subgroups are prevalent in reality. With
the increasing advancement of computer simulations, the critical role of subgroups in crowd
modeling has been gradually recognized. Here, we develop a force-based model to reproduce
the walking behaviors of pedestrian subgroups, in which the quantitative laws extracted from
public datasets are incorporated for controlling their spatial configurations at different non-
extreme densities. Numerical simulations indicate that our model achieves the simulation of
pedestrian subgroups that coincides with empirical observations, and presents better simulation
performance than existing subgroup models. The presence of pedestrian subgroups has also been
confirmed to have certain effects on both fundamental diagrams and lane formation. Overall,
this paper contributes a valuable framework to the modeling of pedestrian subgroups for guiding
relevant implementations in potential application areas.

1. Introduction

Collective motion is an important topic emerging in complex social systems, from small-scale organisms such as cells and bacteria
to large-scale ones such as schooling fish and sheep herds (Vicsek and Zafeiris, 2012). With the increasing frequency of mass
activities, recent trends in collective motion have led to a proliferation of studies involving human crowds (Bain and Bartolo,
2019; Xu et al., 2021). The modeling of human collective motion has been attracting a lot of interest, since the development of
computational social science enables researchers to use computer simulations to reproduce various empirically observed crowd
behaviors (Lazer et al., 2020; Zhou et al., 2019). Despite a lot of crowd models merely considering the interaction between isolated
individuals, the realistic evidence denotes that most pedestrians do not walk alone (Nicolas and Hassan, 2023). As an intermediate
layer from isolated individuals to human crowds, pedestrian subgroups are prevalent and represent those who move together in
a congregated form based on social relationships. Therefore, establishing human motion models involving pedestrian subgroups
is a central concern, which plays a key role in understanding crowd dynamics (Mukherjee et al., 2015) and managing large-scale
events (Helbing et al., 2001).

A considerable amount of literature has been published on the modeling of pedestrian subgroups, these studies mainly focus on
the improvement of several classical human motion models: social force models (SFMs) (Helbing and Molnár, 1995; Helbing et al.,
2000), cellular automata models (CAMs) (Burstedde et al., 2001), and agent-based models (ABMs) (Bonabeau, 2002). The SFMs
are continuous in spatio-temporal dimensions, and the group forces originating from socio-psychological definitions are generally
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added to the equations of motion (Moussaïd et al., 2010; Turgut and Bozdag, 2021), for the purpose of reflecting the characteristics
of pedestrian subgroups. The CAMs are discrete in spatio-temporal dimensions, which formulate a series of local state update rules
by introducing aggregation dynamics (Crociani et al., 2018) and behavioral features (Lu et al., 2017) into the ground fields to
model the movement of pedestrian subgroups. The ABMs can be continuous or discrete in spatio-temporal dimensions, and often
adopt the structure matrix (Qiu and Hu, 2010), behavioral rules (Hussein and Sayed, 2016), attribute sets (Crociani et al., 2013), and
avoidance mechanisms (Karamouzas and Overmars, 2012) to simulate subgroup behaviors. Despite that CAMs and ABMs respectively
have the advantages of fast computing efficiency (Li et al., 2019) and high flexible scalability (Bonabeau, 2002), we still prefer the
SFM inspired by Newtonian mechanics as a basic model in this paper. The reasons are mainly reflected in two aspects of reality and
fineness: One is that SFMs describe pedestrian motion by a set of forces reflecting external influences and internal motivations, rather
than directly defining the rules of behaviors, which can more realistically characterize the decision process of individuals among
different movement choices. The other is that SFMs are continuous and have infinitely high spatio-temporal resolution compared
with CAMs and most ABMs, which can more finely reproduce human continuous behaviors in real physical space.

Most studies of subgroup modeling based on the SFM have been developed following two aspects. One aspect suggests that
he leader–follower principle can be introduced to model the motion of pedestrian subgroups. Li et al. (2017) incorporated the
ohesive force generated by social relations and the attractive force from group leaders into the SFM, and simulated a more realistic
vacuation process. Zhang et al. (2018) proposed a two-layer SFM considering the interaction between leaders and members to
eproduce the group behavior in earthquake evacuation. Xie et al. (2021) introduced the social identity theory of leadership into
he group force derived from Lennard-Jones potential, and related simulations denoted that the group effect promotes the evacuation
erformance. Although the leader–follower pattern appears to be common in emergency evacuations, it is obviously different from
he walking behaviors under normal conditions. The other aspect argues that pedestrian subgroups maintain coordinated movement
hrough cohesive interactions. Xu and Duh (2010) improved the SFM by including the bonding effects of group cohesion to explain
he observed phenomena of walking delay and overtaking. Moussaïd et al. (2010) combined a vision field, an attraction of the mass
enter, and a repulsion of group members into the SFM, whose simulations are consistent with empirical observations. Huang et al.
2018) designed a social group force model (SGFM) based on the behaviors of inter-group coordination and intra-group avoidance,
nd verified it by collected videos and virtual reality (VR) experiments. However, the behavioral patterns of pedestrian subgroups
resented by these models are relatively fixed (i.e., strongly dependent on parameter settings before simulation), and cannot be
djusted adaptively with the surrounding environment as in realistic situations.

To address the above critical problems of these models, we develop a force-based model to simulate the walking behaviors of
edestrian subgroups. Based on data extracted from six public datasets, the quantitative laws of spatial configurations of pedestrian
ubgroups are discovered. The mathematical functions of these laws are incorporated into the expression of the group control force to
djust the relative distance and relative angle between subgroup members. Numerical simulations indicate that our model presents
he organized patterns of pedestrian subgroups at different non-extreme densities, and also exhibits stronger reproducibility than
xisting subgroup models. In addition, we respectively conduct numerical simulations on the motion of pedestrian subgroups in
nidirectional and bidirectional flows. Simulation snapshots and quantitative analysis demonstrate that the presence of pedestrian
ubgroups has non-negligible effects on both fundamental diagrams and lane formation. These findings provide valuable guidance
or some potential application areas such as crowd management, facility design, and animation production.

The rest of this paper is organized as follows. Section 2 describes the extraction of quantitative laws of spatial configurations. The
athematical model of pedestrian subgroups is proposed in Section 3. Section 4 provides numerical simulations and corresponding

nalysis details. In Section 5, the primary conclusions and future prospects are summarized.

. Extracting quantitative laws

.1. Pedestrian subgroups identified from public datasets

To reveal the quantitative laws implicit in spatial configurations of pedestrian subgroups, six public datasets from various outdoor
nvironments are selected for subsequent analysis. The former two datasets labeled Seq_eth and Seq_hotel were recorded from a
ird-eye view with a frame rate of 2.5FPS, which include walking pedestrians in busy scenarios outside a college building and
bus station (Pellegrini et al., 2009). The following three datasets named Crowds_zara01, Crowds_zara02, and Students003 were

aken in public spaces from the top-view at 25FPS, and captured the movement of pedestrians in a shopping street and a college
ampus (Lerner et al., 2007). The last dataset called VEG_gall is a five-minute video sequence collected with a frame rate of 8FPS,
overing pedestrian crowds with density changes in Vittorio Emanuele II Gallery (Bandini et al., 2014). It is worth noting that the
rowd densities in Students003 and VEG_gall are relatively high, whereas those in the other four datasets are relatively low. Table 1
resents further details of the above datasets, involving the year, location, number of pedestrians, flow type, and density range
i.e., the minimum and maximum numbers of pedestrians divided by the estimated area of the collection region).

In these datasets, pedestrian subgroups are discovered based on an automatic algorithm developed by our team (Wu et al.,
023), and a few misidentified cases have also been manually corrected to improve the identification accuracy. Fig. 1(a) displays
he identification examples from different public datasets, in which pedestrians belonging to the same subgroup are marked with
ed circles. Those pedestrians standing together (e.g., chatting) are not taken into account, because we mainly focus on the walking
ehaviors of pedestrian subgroups. Totally, we extract the pedestrian labels for 1824 isolated individuals, 586 subgroups of 2
2

embers, 113 subgroups of 3 members, 19 subgroups of 4 members, and 12 subgroups of more than 5 members. As shown in
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Table 1
Further details of public datasets.

Dataset Year Location No. Ped Flow type Density range

Seq_eth 2009 Zurich, Switzerland 360 Bidirectional 0.007 ∼ 0.181 m−2

Seq_hotel 2009 Zurich, Switzerland 389 Bidirectional 0.011 ∼ 0.192 m−2

Crowds_zara01 2007 Nicosia, Cyprus 148 Bidirectional 0.012 ∼ 0.239 m−2

Crowds_zara02 2007 Nicosia, Cyprus 204 Bidirectional 0.012 ∼ 0.227 m−2

Students003 2007 Tel Aviv, Israel 434 Multidirectional 0.105 ∼ 0.410 m−2

VEG_gall 2014 Milan, Italy 630 Multidirectional 0.057 ∼ 0.403 m−2

Fig. 1. Pedestrian subgroups identified from public datasets. (a) Identification examples of pedestrian subgroups, those belonging to the same subgroup are
marked with red circles. (b) The proportion distribution of subgroup size, and the red line corresponds to a zero-truncated Poisson fit.

Fig. 1(b), the proportion decreases rapidly as the subgroup size increases, which can be approximated with a zero-truncated Poisson
distribution, as given by the following equation:

𝑃 (𝑠) =
exp (−𝜆) ⋅ 𝜆𝑠

𝑠!
[

1 − exp (−𝜆)
] (1)

where 𝑠 indicates the subgroup size, and the parameter is estimated as 𝜆 = 0.64. It tallies with the distribution characteristics of
subgroup size (Coleman and James, 1961), which demonstrates the reliability of subgroup identification in these datasets. Due to
the fact that the subgroup size exceeding 4 is rare, those subgroups of 2 to 4 members are regarded as the main research objects.

2.2. Definition of state variables for pedestrian subgroups

From the above identification results, we are able to extract the trajectories of subgroup members according to their IDs. These
trajectories imply the relative positions of subgroup members at different times, which contain 144804, 20928, and 1943 samples for
subgroups of 2, 3, and 4 members, respectively. This number of samples is sufficient to effectively observe the organized patterns of
pedestrian subgroups when walking. Fig. 2(a) performs the observed spatial configurations for pedestrian subgroups with different
sizes, and a darker area reflects a higher frequency of members appearing at this position. The red filled circles represent the average
positions of subgroup members, which are connected to reveal the average patterns of pedestrian subgroups. For subgroups of 2
members, they prefer to form linear formations orthogonal to the walking direction. In subgroups of sizes 3 and 4, the pedestrians
in middle positions stand slightly behind to those on both sides to form bending formations. These results suggest that the walking
behaviors of pedestrian subgroups can give rise to special patterns of spatial organization.

The previous empirical research has demonstrated that at very low density, subgroup members tend to walk side by side due
to the compatibility of walking faster and facilitating social interactions, but as the density reaches a moderate level, the growing
importance of social interactions would lead to ‘‘V’’-like or ‘‘U’’-like spatial configurations (Moussaïd et al., 2010). However, little is
known about how the increasing density quantitatively affects the transition of spatial configurations from horizontal to ‘‘V’’-like or
‘‘U’’-like formations, we therefore define several state variables to describe pedestrian subgroups in a mathematical form. Fig. 2(b)
illustrates the relative distances and relative angles between subgroup members, defined by the nearest neighbor on the right-hand
side of the individual. These state variables allow us to create more practical parameters, one is the average relative distance within
subgroup 𝐺, which is expressed as follows:

⟨𝑑𝐺⟩ =
1

𝑛𝐺−1
∑

𝑑𝑖,𝑖+1 (2)
3

𝑛𝐺 − 1 𝑖=1
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Fig. 2. Spatial configurations for pedestrian subgroups with different sizes. (a) Organized patterns of pedestrian subgroups from the observed data, where the
red filled circles represent the average positions of subgroup members. (b) The definition of state variables, including the relative distances and relative angles
between subgroup members.

where 𝑛𝐺 is the number of subgroup members. The other is the average relative angle that characterizes the concavity degree of
subgroup 𝐺, which is given by:

⟨𝛼𝐺⟩ =

⎧

⎪

⎨

⎪

⎩

𝛼12, 𝑛𝐺 = 2
[

𝛼12 +
(

180◦ − 𝛼𝑛𝐺−1,𝑛𝐺
)]

∕2, 𝑛𝐺 = 3, 4
(3)

For subgroups of 2 members, 𝛼12 is sufficient to describe their organized patterns. In subgroups of sizes 3 and 4, 𝛼12 and 180◦−𝛼𝑛𝐺−1,𝑛𝐺
correspond to the angles of the two outer members with respect to the middle pedestrians, the average of which can be adopted to
measure the concavity of ‘‘V’’-like and ‘‘U’’-like formations.

2.3. Quantitative laws of spatial configurations

Our goal here is to explore the quantitative laws of spatial configurations at different non-extreme densities. The classical density
is the number of pedestrians divided by the area of the region, but this calculation comes at the cost of resolution since large jumps
of exact placements are reduced by taking averages (Steffen and Seyfried, 2010). From this, we consider that the density defined
4
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Fig. 3. Quantitative laws of spatial configurations under different local neighbor densities. (a)–(c) The average relative distance as a function of the local
neighbor density for subgroup size = 2, 3, and 4. (d)–(f) The average relative angle as a function of the local neighbor density for subgroup size = 2, 3, and 4.
These circles represent the observed data from datasets, the solid and dotted lines indicate the fitting curves and extension lines, respectively. The gray shaded
areas mark the transition domains, ranging from 0.1 m−2 to 0.25 m−2.

within a certain range around the subgroup is more accurate, which reflects the influence of local environment. The local neighbor
density of subgroup 𝐺 is therefore defined as follows:

𝜌𝐺
(

𝐱𝐺
)

=
∑

𝑗∉𝐺
𝑓
(

𝐱𝑗 − 𝐱𝐺
)

(4)

Here, 𝐱𝐺 stands for the position of the mass center of subgroup 𝐺, 𝐱𝑗 are the positions of other pedestrians 𝑗 ∉ 𝐺 in the surrounding
of 𝐱𝐺. Note that subgroup members 𝑗 ∈ 𝐺 are not included as they account for a large proportion in the calculation and weaken
the impact of surrounding pedestrians. The weight function 𝑓𝑤(𝑑𝑖𝑗 ) decreases as distance 𝑑𝑖𝑗 increases, which is represented in the
form of a Gaussian kernel function:

𝑓
(

𝐱𝑗 − 𝐱𝐺
)

= 1
𝜋𝑅2

exp
(

−‖‖
‖

𝐱𝑗 − 𝐱𝐺
‖

‖

‖

2
∕𝑅2

)

(5)

where 𝑅 is a parameter reflecting the size of the influence area, and we take 𝑅 = 3.66 m as a reasonable evaluation, in accordance
with the maximum radius of the social zone (Bethel and Murphy, 2008).

Based on the extracted samples, we calculate the local neighbor density, average relative distance, and average relative angle
for each pedestrian subgroup. To reveal the organized patterns from a statistical perspective, ⟨𝑑𝐺⟩ and ⟨𝛼𝐺⟩ are averaged within
certain intervals, which are obtained by equally dividing 𝜌𝐺(𝐱𝐺). Fig. 3 presents the quantitative laws of spatial configurations under
different local neighbor densities, these circles with red, blue, and yellow colors represent the data corresponding to subgroups of 2,
3, and 4 members. As 𝜌𝐺(𝐱𝐺) increases in Fig. 3(a)–(c), ⟨𝑑𝐺⟩ first declines with a larger slope and changes slowly after a transition
point. The explanation might be that even if the surrounding is crowded, subgroup members who walk almost close to each other
can no longer reduce their distances due to the constraints of physical space. Besides, Fig. 3(d)–(f) indicate that ⟨𝛼𝐺⟩ almost remains
around 90◦ for subgroups of 2 members, while it first tends to be stable and then increases at a faster rate for subgroups of 3 and
4 members. This is attributed to the fact that subgroup members have to coordinate social interactions by enhancing the concavity
degree of their structures, which is noticeable after 𝜌𝐺(𝐱𝐺) exceeding a transition point.

Apart from Fig. 3(d), we notice that obvious transition points exist for both ⟨𝑑𝐺⟩ and ⟨𝛼𝐺⟩, which are distributed in the transition
domain from 0.1 m−2 to 0.25 m−2. The linear slopes before and after the transition point are apparently different in these figures,
whereby the piecewise fitting is employed to extract the mathematical functions. Here, these fitting curves are treated as the explicit
relationships between preferred relative distance 𝑑∗ (𝜌 ) or preferred relative angle 𝛼∗ (𝜌 ) with local neighbor density 𝜌 (𝐱 ), which
5
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Table 2
Parameter values in piecewise linear functions.

Linear Subgroup Piecewise 1 Piecewise 2 Transition point

function size 𝑘1 𝑏1 𝑘2 𝑏2 𝜌𝑡𝑝𝐺
𝑑∗
𝐺(𝜌𝐺) 2 −0.922 0.752 −0.032 0.627 0.141 m−2

𝑑∗
𝐺(𝜌𝐺) 3 −2.001 0.971 −0.167 0.665 0.167 m−2

𝑑∗
𝐺(𝜌𝐺) 4 −1.478 0.869 −0.411 0.742 0.119 m−2

𝛼∗
𝐺(𝜌𝐺) 2 −13.478 93.271 −13.478 93.271 –

𝛼∗
𝐺(𝜌𝐺) 3 −5.448 100.143 61.408 84.987 0.227 m−2

𝛼∗
𝐺(𝜌𝐺) 4 −14.561 90.766 103.942 74.338 0.139 m−2

are expressed by the following piecewise linear functions:

𝛷∗
𝐺
(

𝜌𝐺
)

=

{

𝑘1 ⋅ 𝜌𝐺
(

𝐱𝐺
)

+ 𝑏1, 0 ≤ 𝜌𝐺
(

𝐱𝐺
)

≤ 𝜌𝑡𝑝𝐺
𝑘2 ⋅ 𝜌𝐺

(

𝐱𝐺
)

+ 𝑏2, 𝜌
𝑡𝑝
𝐺 < 𝜌𝐺

(

𝐱𝐺
)

≤ 𝜌max
𝐺

(6)

where 𝛷 is a symbol denoting distance (𝛷 = 𝑑) or angle (𝛷 = 𝛼), 𝑘1 and 𝑘2 are the slopes of piecewise linear functions, 𝑏1 and 𝑏2 are
corresponding intercepts, 𝜌𝑡𝑝𝐺 and 𝜌𝑚𝑎𝑥𝐺 are the transition point and maximum value of the local neighbor density, respectively. The
above equation reveals the quantitative laws of spatial configurations changing with the density, which is beneficial for establishing
a model to reproduce more realistic subgroup behaviors.

The values of 𝑘1, 𝑘2, 𝑏1, 𝑏2, and 𝜌𝑡𝑝𝐺 in piecewise linear functions are listed in Table 2, which can be easily calculated from the
extracted data. However, due to the limited range of the local neighbor density in these datasets, the values of 𝜌𝑚𝑎𝑥𝐺 need to be
taken by extrapolating the explicit relationships in Fig. 3. Here, two extrapolation conditions should be satisfied simultaneously:
First, the preferred relative distance cannot be lower than the pedestrian radius (see Table 3) under the tolerance of partial body
overlap (e.g., side-shoulder behavior) of neighboring members (i.e., 𝑑∗𝐺

(

𝜌𝐺
)

≥ 0.25 m). Second, the preferred relative angle cannot
destroy the order of subgroup members (see Fig. 2(b)) defined in orthogonal to the walking direction (i.e., 0◦ ≤ 𝛼∗𝐺

(

𝜌𝐺
)

≤ 180◦). For
subgroups with a specific size, the values of 𝜌𝑚𝑎𝑥𝐺 for the preferred relative distance and preferred relative angle should be consistent,
which is determined as the minimum derived from the two above conditions. From this, we have 𝜌𝑚𝑎𝑥𝐺 = 6.920 m−2, 1.547 m−2, and
1.017 m−2 for subgroup size = 2, 3, and 4, respectively.

3. Mathematical model

3.1. Modeling the motion of pedestrian subgroups

The SFM adopts the nonlinear coupled Langevin equation to describe the change of pedestrian acceleration with the interaction
of multiple forces (Helbing et al., 2000). On this basis, a group control force is introduced to simulate the movement process of
pedestrian subgroups, and pedestrian 𝑖 belonging to subgroup 𝐺 satisfies the following differential equation:

𝑚𝑖
𝑑𝐯𝑖 (𝑡)
𝑑𝑡

= 𝐟𝑖𝑑 +
∑

𝑗∉𝐺
𝐟𝑖𝑗 +

∑

𝑊
𝐟𝑖𝑊 +

∑

𝑞∈𝐺
𝐟𝐺𝑖𝑞 (7)

in which the motion of pedestrian 𝑖 is driven by the four forces on the right side of the above equation: (1) 𝐟𝑖𝑑 is a force driving
pedestrians to move towards the target at a certain velocity; (2) 𝐟𝑖𝑗 is an interaction force with pedestrians outside subgroup 𝐺; (3)
𝐟𝑖𝑊 is an interaction force with obstacles or walls; (4) 𝐟𝐺𝑖𝑞 is a group control force with neighboring members within subgroup 𝐺.

The mathematical form corresponding to the self-driven force 𝐟𝑖𝑑 of pedestrian 𝑖 is given by:

𝐟𝑖𝑑 = 𝑚𝑖
𝑣0𝑖 𝐞

0
𝑖 − 𝐯𝑖 (𝑡)
𝜏𝑖

(8)

where 𝑚𝑖 is the mass of pedestrian 𝑖, 𝑣0𝑖 and 𝐞0𝑖 respectively represent the desired speed and desired direction, 𝜏𝑖 denotes a time
constant, which is related to the relaxation time for adapting to his or her actual velocity 𝐯𝑖 (𝑡).

The function of the interaction force 𝐟𝑖𝑗 with pedestrian 𝑗 outside subgroup 𝐺 is defined as:

𝐟𝑖𝑗 = 𝐴𝑖 exp
[(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

∕𝐵𝑖
]

𝐧𝑖𝑗 + 𝑘𝑔
(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

𝐧𝑖𝑗 + 𝜅𝑔
(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

𝛥𝑣𝑡𝑗𝑖𝐭𝑖𝑗 (9)

ere, the psychological tendency of pedestrians 𝑖 and 𝑗 to move away from each other is reflected by the repulsive interaction
𝑖 exp

[(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

∕𝐵𝑖
]

𝐧𝑖𝑗 , where 𝐴𝑖 and 𝐵𝑖 are constants, 𝑑𝑖𝑗 is the distance between the centroids of two pedestrians, 𝑟𝑖𝑗 is the sum
of their radii 𝑟𝑖 and 𝑟𝑗 , 𝐧𝑖𝑗 is the normalized vector pointing from pedestrian 𝑗 to 𝑖. Besides, two additional contact forces are ‘‘body
force’’ 𝑘𝑔

(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

𝐧𝑖𝑗 and ‘‘sliding friction force’’ 𝜅𝑔
(

𝑟𝑖𝑗 − 𝑑𝑖𝑗
)

𝛥𝑣𝑡𝑗𝑖𝐭𝑖𝑗 , in which 𝑔(𝑥) is zero if two pedestrians do not contact each
ther (𝑟𝑖𝑗 < 𝑑𝑖𝑗), otherwise it is equal to 𝑥. 𝑘 and 𝜅 are body elasticity and sliding friction coefficients standing for the obstruction
ffects, 𝐭 =

(

−𝐧2 ,𝐧1
)

holds the tangential direction and 𝛥𝑣𝑡 =
(

𝐯 − 𝐯
)

⋅ 𝐭 is the tangential velocity difference.
6
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The expression of the interaction force 𝐟𝑖𝑊 with obstacles or walls is similar to the above equation, which reads:

𝐟𝑖𝑊 = 𝐴𝑖 exp
[(

𝑟𝑖 − 𝑑𝑖𝑊
)

∕𝐵𝑖
]

𝐧𝑖𝑊 + 𝑘𝑔
(

𝑟𝑖 − 𝑑𝑖𝑊
)

𝐧𝑖𝑊 − 𝜅𝑔
(

𝑟𝑖 − 𝑑𝑖𝑊
) (

𝐯𝑖 ⋅ 𝐭𝑖𝑊
)

𝐭𝑖𝑊 (10)

here 𝑑𝑖𝑊 is the distance from the centroid of pedestrian 𝑖 to the obstacle or wall, 𝐧𝑖𝑊 denotes the normalized vector perpendicular
to it, and 𝐭𝑖𝑊 is the direction tangential to it.

The group control force 𝐟𝐺𝑖𝑞 between member 𝑖 and its neighboring member 𝑗 on the right-hand side within subgroup 𝐺 is
composed of 𝐟𝐺_𝑑

𝑖𝑞 and 𝐟𝐺_𝛼
𝑖𝑞 , which control the relative distance and relative angle in the connecting and orthogonal directions,

respectively. To simplify the modeling process, the spatial configurations for subgroups of 3 and 4 members are assumed to be
symmetrical with respect to the centerline. In this case, the relative distances between neighboring members are equal, and the
outer angles satisfy 𝛼12 = 180◦ − 𝛼𝑛𝐺−1,𝑛𝐺 .

On the one hand, the interaction between neighboring members within subgroup 𝐺 should be long-range attractive and short-
range repulsive. The potential describing realistic intermolecular interactions is considered here, whose general form is written as:

𝑉
(

𝑑𝑖𝑞
)

= 4𝜀

[

(

𝜎
𝑑𝑖𝑞

)2𝑛
−
(

𝜎
𝑑𝑖𝑞

)𝑛
]

(11)

Here, as one of the most widely used intermolecular potentials, the Lennard-Jones potential (𝑛 = 6) has been applied to control the
relative distance between subgroup members (Xie et al., 2021). The first half term is the repulsive interaction (Pauli repulsion), and
the second half term is the attractive interaction (London dispersion), 𝑑𝑖𝑞 represents the distance between the centroids of members
𝑖 and 𝑞, 𝜎 is a critical distance at which the potential is zero, 𝜀 is the well depth. If 𝑉 ′(𝑑𝑖𝑞) = 0, 𝑑𝑒𝑖𝑞 = 21∕6𝜎 corresponds to the
quilibrium distance between attractive and repulsive forces (i.e., the potential reaches a minimum). However, there are two issues
ith the subgroup force based on Lennard-Jones potential: First, the growth rate of repulsion is extremely fast when 𝑑𝑖𝑞 < 𝑑𝑒𝑖𝑞 , it
robably pushes the two members away from each other instantaneously. Second, the attraction first increases to the maximum
ith 𝑑𝑖𝑞 and then converges to zero at a faster rate when 𝑑𝑖𝑞 > 𝑑𝑒𝑖𝑞 , making it hard for farther members to approach. For this, the

exponential factor is reduced to 𝑛 = 1 for alleviating these issues, and the distance control force 𝐟𝐺_𝑑
𝑖𝑞 is therefore given by:

𝐟𝐺_𝑑
𝑖𝑞 = −∇𝐝𝑖𝑞𝑉

(

𝑑𝑖𝑞
)

= 4𝜀

(

2 𝜎
2

𝑑3𝑖𝑞
− 𝜎

𝑑2𝑖𝑞

)

𝐧𝑖𝑞 (12)

where 𝐧𝑖𝑞 is the normalized vector pointing from member 𝑞 to 𝑖, and the equilibrium distance satisfying ‖𝐟𝐺_𝑑
𝑖𝑞 ‖ = 0 is equal to

𝜎. For this, we regard 𝑑𝑒𝑖𝑞(𝜌𝐺) as consistent with 𝑑∗𝐺(𝜌𝐺), which also depends on local neighbor density 𝜌𝐺. This equation is then
rewritten as below:

𝐟𝐺_𝑑
𝑖𝑞 = 𝜆𝑑

⎡

⎢

⎢

⎣

𝑑𝑒𝑖𝑞
(

𝜌𝐺
)2

𝑑3𝑖𝑞
−

𝑑𝑒𝑖𝑞
(

𝜌𝐺
)

𝑑2𝑖𝑞

⎤

⎥

⎥

⎦

𝐧𝑖𝑞 (13)

where 𝜆𝑑 represents the regulating parameter for distance control force.
On the other hand, subgroup members tend to maintain specific spatial configurations to balance their social interactions (Mous-

saïd et al., 2010), whereby 𝛼𝑒𝑖𝑞(𝜌𝐺) is assumed to be a density-dependent equilibrium angle between members 𝑖 and 𝑞. We therefore
argue that, 𝛼𝑒𝑖𝑞(𝜌𝐺) is the same as 𝛼∗𝐺(𝜌𝐺) if the two members are biased to the left side of the centerline, otherwise it equals to
180◦ − 𝛼∗𝐺(𝜌𝐺). The magnitude of relative angle deviation is defined as 𝛥𝛼𝑖𝑞 = |𝛼𝑖𝑞 − 𝛼𝑒𝑖𝑞(𝜌𝐺)| if their actual relative angle is 𝛼𝑖𝑞 .
In general, a larger deviation 𝛥𝛼𝑖𝑞 corresponds to a stronger tendency 𝑇𝑖𝑞(𝛥𝛼𝑖𝑞) for members adjusting to their preferred relative
angles. However, the incremental relationship between 𝑇𝑖𝑞(𝛥𝛼𝑖𝑞) and 𝛥𝛼𝑖𝑞 can take many functional forms (e.g., linear, S-shaped,
and inverse-S-shaped). Here, it is assumed to follow a classical Sigmoid function (S-shaped) for the following reasons: One is that
when 𝛥𝛼𝑖𝑞 is small, the adjustment tendency is similar to the mode of ‘‘fine-tuning’’. The other is that when 𝛥𝛼𝑖𝑞 is large, this
tendency tends to be saturated, since it is restricted by the physical acceleration of pedestrians. As a result, 𝑇𝑖𝑞(𝛥𝛼𝑖𝑞) as a function
of 𝛥𝛼𝑖𝑞 is obtained as follows:

𝑇𝑖𝑞
(

𝛥𝛼𝑖𝑞
)

= 1
1 + exp

[

−𝑘𝛼
(

𝛥𝛼𝑖𝑞 − 𝛥𝛼𝑓
)] (14)

where 𝑘𝛼 denotes the ascending gradient that controls the slope change, and 𝛥𝛼𝑓 indicates a critical angle deviation at which the
slope increases the fastest. Owing to the fact that the adjustment tendency has directionality, a sign function sgn(⋅) is integrated
into 𝑇𝑖𝑞(𝛥𝛼𝑖𝑞) to make it symmetrical with respect to the origin. In this case, the angle control force can be formally defined as
𝐟𝐺_𝛼
𝑖𝑞 = 𝜆𝛼sgn

(

𝛼𝑖𝑞 − 𝛼𝑒𝑖𝑞
(

𝜌𝐺
)

)

𝑇𝑖𝑞
(

𝛥𝛼𝑖𝑞
)

𝐭𝑖𝑞 , whose explicit expression is given by:

𝐟𝐺_𝛼
𝑖𝑞 = 𝜆𝛼

sgn
(

𝛼𝑖𝑞 − 𝛼𝑒𝑖𝑞
(

𝜌𝐺
)

)

1 + exp
[

−𝑘𝛼
(

𝛥𝛼𝑖𝑞 − 𝛥𝛼𝑓
)] 𝐭𝑖𝑞 (15)

where 𝜆𝛼 corresponds to the regulating parameter for angle control force, and 𝐭𝑖𝑞 = (−𝑛2𝑖𝑞 , 𝑛
1
𝑖𝑞) stands for the tangential direction
7

perpendicular to 𝐧𝑖𝑞 .
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Fig. 4. Modeling schematic of the group control force. The group control force is composed of the distance control and angle control forces, which act along
the connecting and orthogonal directions, respectively.

Based on these discussions and derivations, the final expression of group control force 𝐟𝐺𝑖𝑞 is organized as follows:

𝐟𝐺𝑖𝑞 = 𝜆𝑑
⎡

⎢

⎢

⎣

𝑑𝑒𝑖𝑞
(

𝜌𝐺
)2

𝑑3𝑖𝑞
−

𝑑𝑒𝑖𝑞
(

𝜌𝐺
)

𝑑2𝑖𝑞

⎤

⎥

⎥

⎦

𝐧𝑖𝑞 + 𝜆𝛼
sgn

(

𝛼𝑖𝑞 − 𝛼𝑒𝑖𝑞
(

𝜌𝐺
)

)

1 + exp
[

−𝑘𝛼
(

𝛥𝛼𝑖𝑞 − 𝛥𝛼𝑓
)] 𝐭𝑖𝑞 (16)

For further aspects regarding the above definitions see the modeling schematic in Fig. 4. The group control force consists of the
distance control and angle control forces, which act along the connecting and orthogonal directions, respectively. This force drives
member 𝑖 to move towards the expected position of invisible individual 𝑖𝑒, at which both relative distance 𝑑𝑖𝑞 and relative angle 𝛼𝑖𝑞
reach the equilibrium values.

3.2. Optimal selection of regulating parameters

The next section is concerned with the optimal selection of regulating parameters in this model. This aims to minimize the
artifactual dynamics when subgroup members adapt to their preferred positions, which includes ensuring faster transition periods
and reducing unrealistic back-and-forth oscillations. The process of adjusting the relative distance and relative angle is similar to
that in typical control systems (Ang et al., 2005). Hence, two crucial dynamic performance indicators are selected as the evaluation
criteria: One is the peak time required for the response to reach the first peak value:

𝑡𝑝 = argmax 𝑐 (𝑡) (17)

where 𝑐(𝑡) represents the time response function, and its maximum value generally corresponds to the first peak value. The other
is the overshoot denoting the deviation of the response at peak time from the final response divided by the final response value,
which is expressed in the following form:

𝜎𝑝 (%) =
𝑐
(

𝑡𝑝
)

− 𝑐 (∞)
𝑐 (∞)

× 100% (18)

where 𝑐(𝑡𝑝) is the response value at peak time, and 𝑐(∞) is the final response value. To sum up, peak time 𝑡𝑝 and overshoot 𝜎𝑝
evaluate the response speed and damping degree of the system, respectively.

These two indicators are then utilized to ascertain the optimal domains of regulating parameters 𝜆𝑑 and 𝜆𝛼 . Under the conditions
that the relative angle (or distance) remains unchanged, we calculate the corresponding 𝑡𝑝 and 𝜎𝑝 for a certain value of 𝜆𝑑 (or 𝜆𝛼) at
different relative distances (or angles), which are taken averaged to reflect statistical characteristics. Fig. 5(a) and 5(b) both illustrate
that peak time 𝑡𝑝 is a decreasing function of regulating parameters 𝜆𝑑 and 𝜆𝛼 , while overshoot 𝜎𝑝 is an increasing function of them.
This implies that a larger regulating parameter makes the response speed faster, but increases the oscillation between individuals;
however, a smaller regulating parameter would slow down the response speed, even though it makes the adjustment process more
stable. For this, we attempt to find a trade-off range where the response speed and damping degree are moderate, 𝜆𝑑 ∈ [500, 650]
and 𝜆𝛼 ∈ [350, 425] are finally estimated as the optimal domains for these two regulating parameters.

For the sake of unification, 𝜆𝑑 = 600 and 𝜆𝛼 = 400 are selected as the optimal values in subsequent simulations, this also allows
us to present the features of distance control force 𝐟𝐺_𝑑 and angle control force 𝐟𝐺_𝛼 in Fig. 6. It is supposed that the equilibrium
8
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Fig. 5. Optimal selection of regulating parameters. (a) Peak time 𝑡𝑝 and overshoot 𝜎𝑝 as functions of regulating parameter 𝜆𝑑 . (b) Peak time 𝑡𝑝 and overshoot
𝜎𝑝 as functions of regulating parameter 𝜆𝛼 . The optimal domains are marked by gray shaded areas.

Fig. 6. Illustration of the distance control and angle control forces in our model. (a) The scalar of distance control force as a function of the relative distance. (b)
The scalar of angle control force as a function of the relative angle. The dashed lines in the vertical direction represent the equilibrium distance and equilibrium
angle, respectively.

distance is 𝑑𝑒𝑖𝑞 = 0.7 m, as shown in Fig. 6(a), we depict the scalar of distance control force as a function of the relative distance
traversing from 0.5 m to 3.0 m. The repulsive interaction appears if 𝑑𝑖𝑞 < 𝑑𝑒𝑖𝑞 , while the attractive interaction dominates if 𝑑𝑖𝑞 > 𝑑𝑒𝑖𝑞 ,
whose degree of change is significantly less than that of the repulsive interaction. Similarly, we assume that the equilibrium angle is
𝛼𝑒𝑖𝑞 = 0◦, Fig. 6(b) draws the scalar of angle control force as a function of the relative angle traversing from −180◦ to 180◦. The force
exhibits a clockwise interaction if 𝛼𝑖𝑞 < 𝛼𝑒𝑖𝑞 , while it performs an anti-clockwise interaction if 𝛼𝑖𝑞 > 𝛼𝑒𝑖𝑞 , which grows in an S-shaped
form as the relative angle deviation increases. Taken together, Fig. 6 provides an intuitive insight into the adjustment process of
the distance control and angle control forces.

4. Numerical simulations

4.1. Simulation setup

As one of the most classical crowd movement scenes in real situations, walkways have been widely used to analyze pedestrian
flow characteristics and complex behavioral patterns (Shi et al., 2018). Therefore, as shown in Fig. 7, numerical simulations are
expected to be performed in a walkway scene of 50 m length and 10 m width, from which the simulation scene is proportionally
9
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Fig. 7. Schematic illustration of the walkway scene for numerical simulations. The real size is 50 m length and 10 m width, with each pixel corresponding to a
0.1 m-side square.

Table 3
Parameter settings in our model.

Symbol Description Value

𝑣0𝑖 Desired speed  (1.3, 0.04) ms−1

𝑚𝑖 Pedestrian mass 80 kg
𝑟𝑖 Pedestrian radius 0.25 m
𝜏𝑖 Relaxation time 0.5 s
𝐴𝑖 Constant 1 2 ⋅ 103 N
𝐵𝑖 Constant 2 0.08 m
𝑘 Body elasticity coefficient 1.2 ⋅ 105 kgs−2

𝜅 Sliding friction coefficient 2.4 ⋅ 105 kgm−1s−1

𝜆𝑑 Regulating parameter 1 600
𝜆𝛼 Regulating parameter 2 400
𝑘𝛼 Ascending gradient 0.05
𝛥𝛼𝑓 Critical angle deviation 90◦

scaled, with each pixel corresponding to a 0.1 m-side square. The pedestrians are randomly distributed in the walking area at the
initial time, after which they will walk in a particular direction (right or left), depending on the settings of relevant simulations.
The gray strips on both sides of the walkway are periodic boundary areas, this means an identical pedestrian will enter from the
other side when a pedestrian leaves either side. The reason for this is to make pedestrian flows more stable without being disrupted
at the ends of the walkway by randomly entering pedestrians (Helbing, 1991)

Turning now to the parameter settings in numerical simulations, whose symbols, descriptions, and values are summarized in
Table 3. The desired speed 𝑣0𝑖 is assumed to follow a Gaussian distribution with mean value 1.3 ms−1 and standard deviation 0.2 ms−1,
tallying with the heterogeneity of walking speed from controlled experiments (Moussaïd et al., 2009). These values of pedestrian
mass 𝑚𝑖, pedestrian radius 𝑟𝑖, relaxation time 𝜏𝑖, constants 𝐴𝑖 and 𝐵𝑖, body elasticity coefficient 𝑘, and sliding friction coefficient
𝜅 are given in accordance with the classical SFM (Helbing et al., 2000). Besides, several parameters involved in the group control
force are also illustrated as follows: regulating parameters 𝜆𝑑 and 𝜆𝛼 are taken from the previous section, with ascending gradient
𝑘𝛼 = 0.05 and critical angle deviation 𝛥𝛼𝑓 = 90◦ at the maximum slope we can generate a reasonable dynamic tendency of the
related function. It is notable that those parameters not mentioned in Table 3 are indicated in subsequent simulations.

4.2. Simulation performance of the proposed model

In the first part of our simulations, it is worth exploring the evolution process of spatial configurations at different density levels
in the surrounding environment. For this, we divide the local neighbor density into five levels, at which the walking behaviors of
pedestrian subgroups are simulated in the walkway scene according to the previous simulation setup. Fig. 8 illustrates the typical
spatial configurations of pedestrian subgroups at five levels of the local neighbor density, in which subgroup size = 2, 3, and 4
respectively correspond to red, blue, and yellow hollow circles, and the circle radius is consistent with the given pedestrian radius.
According to the simulation results, it can be seen that the spatial configurations of pedestrian subgroups are exactly emerged from
the quantitative laws found in Fig. 3, that is, subgroup members spontaneously adjust their positions to accommodate the spatial
impact of changes in local neighbor density. This indicates that our model successfully reproduces the spatial preferences of walking
patterns for pedestrian subgroups, which is also in good agreement with empirical observations.

Let us investigate the simulation performance of our model compared with existing subgroup models, proposed by Xu and Duh
(2010), Xie et al. (2021), and Moussaïd et al. (2010), respectively. These models all incorporate the group force on the basis of the
SFM, whose modeling processes are similar to that in this paper. With the same initial conditions of all pedestrians guaranteed, we
program these models to simulate subgroup movements according to their given formulas and parameters, and the corresponding
snapshots of unidirectional pedestrian flows are exhibited in Fig. 9(a). The model of Xu and Duh (2010) can only ensure the relative
distances between any pair of subgroup members are equal, resulting in the shape of equilateral polygons. Due to the leader–follower
effect, most pedestrian subgroups simulated by Xie et al. (2021) present ‘‘queue-like’’ structures, in which members follow each
other along the movement direction. However, the walking patterns from these two models obviously differ from those in empirical
10
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Fig. 8. Typical spatial configurations of pedestrian subgroups at five levels of the local neighbor density from simulation results. The vertical direction denotes
different subgroup sizes, and the horizontal direction indicates various local neighbor densities.

observations, even if they succeed in making subgroup members gather together. Turning to the model of Moussaïd et al. (2010),
although it emerges the organized patterns very close to those in reality, it only determines the specific shape of pedestrian subgroups
by setting parameters before simulation, rather than adaptively adjusting it with density changes in the surrounding environment as
our model does. As a result, our model is more realistic than existing subgroup models, and also reflects the heterogeneity features
of spatial configurations.

To compare the reproducibility of these subgroup models, the Jensen–Shannon (JS) divergence is selected to assess the similarity
between the distributions of simulation data and real data. Before its concrete form is given, it necessitates declaring the Kullback–
Leibler (KL) divergence 𝐾𝐿(𝑃∥𝑄), which is a measurement of the difference between probability distributions 𝑃𝑋 (𝑥) and 𝑄𝑋 (𝑥):

𝐾𝐿 (𝑃∥𝑄) =
∑

𝑥∈𝛩
𝑃𝑋 (𝑥) log

𝑃𝑋 (𝑥)
𝑄𝑋 (𝑥)

(19)

where 𝑋 is a random variable, and 𝛩 means the probability space. However, a major problem with the KL divergence is asymmetry,
that is, 𝐾𝐿(𝑃∥𝑄) ≠ 𝐾𝐿(𝑄∥𝑃 ). As a variant of the KL divergence, the JS divergence solves this problem, which is given as below:

𝐽𝑆 (𝑃∥𝑄) = 1
2
𝐾𝐿

(

𝑃∥𝑃 +𝑄
2

)

+ 1
2
𝐾𝐿

(

𝑄∥𝑃 +𝑄
2

)

(20)

Note that 𝐽𝑆(𝑃∥𝑄) ∈ [0, 1] is symmetrical, with its value closer to 0 corresponding to the greater similarity between 𝑃𝑋 (𝑥) and
𝑄𝑋 (𝑥). For relative observables, we calculate the JS divergence of their distributions simulated by various subgroup models with
respect to the distribution of real data extracted from public datasets. These results of our model are closest to those obtained from
empirical observations in Fig. 9(b), which strongly confirms that our model has better reproducibility than existing subgroup models.

4.3. Effect of pedestrian subgroups on fundamental diagrams

The fundamental diagrams, as one of the most common quantitative indicators, have received considerable attention in crowd
dynamics. This dependency of density and speed (or flow) can effectively measure the characteristics of moving crowds, and allows
the evaluation of human motion models and facility capacity (Seyfried et al., 2005). Extensive studies on fundamental diagrams show
that the speed decreases monotonically with the increasing density (Dong et al., 2020), the explanation might be that pedestrians
would slow down to avoid potential collisions in crowded spaces (Parisi et al., 2021). Nonetheless, subgroup factors are often ignored
in pedestrian flows, and little is known about how they affect fundamental diagrams. To investigate this issue, we design a series of
unidirectional flow simulations covering three possible cases: (1) No subgroups (pedestrians are all isolated individuals); (2) Normal
proportion of subgroups (the proportion is consistent with that in public datasets); (3) High proportion of subgroups (the proportion
is twice as much as that in public datasets). Based on this, different numbers of total pedestrians are further given to create the
environmental conditions at various density levels.
11
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Fig. 9. Comparison of simulation performance with existing subgroup models. (a) Snapshots of unidirectional pedestrian flows simulated by various subgroup
models. (b) Jensen–Shannon divergence of the distributions simulated by various subgroup models with respect to the distribution of real data extracted from
public datasets.

Under the three cases of subgroup proportions, Fig. 10 displays the snapshots of unidirectional pedestrian flows at various density
levels. The direction of pedestrian flow is from left to right, with black, red, blue, and yellow solid circles representing isolated
individuals and pedestrian subgroups of 2, 3, and 4 members, respectively. At low densities (𝑁 = 80 and 𝑁 = 160), most pedestrian
subgroups maintain walking side by side, with the exception of a few constrained by the surrounding space adjust their spatial
configurations. No matter for individuals or subgroups, the local space is generally sufficient for them to move at a near-free speed.
As the density raises (𝑁 = 240 and 𝑁 = 320), pedestrian subgroups adapt to more stringent physical constraints by adjusting
their spatial configurations with a stronger degree of concavity. The crowds are found to be non-uniform distributed in the scene
(i.e., partial areas are crowded, while others are empty), and the phenomenon becomes more apparent as the proportion of subgroups
increases. These findings intuitively indicate that pedestrian subgroups have a certain influence on unidirectional flows, and it is
also expected to further explore the underlying features reflected by this phenomenon.

To quantitatively analyze the speed–density and flow–density relations for the three cases, there are multiple methods to measure
the fundamental quantities. The local density, local speed, and local flow proposed by Helbing et al. (2007) are chosen here, because
the results derived by this method show more continuity and less fluctuation than those of classical methods. By combining the local
density at specific positions with corresponding local speed and local flow, the fundamental diagrams of unidirectional pedestrian
flows are illustrated in Fig. 11. As the local density increases, Fig. 11(a) reveals that the local speed first remains constant and then
steadily decreases, accompanied by the local flow raising first and then reaching saturation and falling in Fig. 11(b). In particular, the
local speed–density relation can be well fitted with the Weidmann function (Weidmann, 1993), as given by the following equation:

𝑣 (𝜌) = 𝑣𝑓𝑟𝑒𝑒

{

1 − exp
[

−𝛾
(

1
𝜌
− 1

𝜌max

)]}

(21)

where 𝑣𝑓𝑟𝑒𝑒 is the free speed at near-zero density, 𝜌max is the maximum density at which the speed drops to zero, and 𝛾 corresponds
to an adaptation parameter. Likewise, the local flow–density relation can also be derived by multiplying the above equation with
the local density:

𝑓 (𝜌) = 𝜌 ⋅ 𝑣𝑓𝑟𝑒𝑒

{

1 − exp
[

−𝛾
(

1
𝜌
− 1

𝜌max

)]}

(22)

These fitting functions for the three cases are shown by solid lines with different colors. Interestingly, the presence of pedestrian
subgroups hardly affects fundamental diagrams at relatively low density, but a high proportion of them enhances the speed and
flow of crowds as the density increases, in good agreement with a recent empirical study (Hu et al., 2021). The explanation might
be that pedestrian subgroups are more likely to form local aggregation (i.e., tolerate closer social distances) in crowded spaces due
to the mutual familiarity of members, which gives rise to more walkable areas and promotes more unblocked pedestrian flows.

4.4. Effect of pedestrian subgroups on lane formation

Let us move to the next topic regarding lane formation in crowds, which is an important self-organization phenomenon that
reveals the macroscopic collective motion emerging from individual anticipatory interactions (Murakami et al., 2021). The oppositely
moving pedestrians randomly distributed at the initial time will form spontaneously separated flows after a transition period. The
underlying principle is that oncoming pedestrians evade left or right with equal probability and enter a queue in the same direction
as oneself, this improves the efficiency of pedestrian flow by reducing the frequency of avoidance behaviors (Helbing et al., 2001).
12
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Fig. 10. Snapshots of unidirectional pedestrian flows at various density levels under the three cases of subgroup proportions. The vertical direction represents
different numbers of total pedestrians, and the horizontal direction indicates the three cases of subgroup proportions.

Fig. 11. Fundamental diagrams in unidirectional pedestrian flows under the three cases of subgroup proportions. (a) Local speed–density relation. (b) Local
flow–density relation. These circle points and solid lines represent the simulation data and fitting functions, respectively.

However, although many experiments and models with regard to this topic have been performed, the effect of pedestrian subgroups
on lane formation still remains poorly understood. As a consequence, the simulations of bidirectional flows are carried out to explore
this issue, and the three cases of subgroup proportions are in line with those in the previous section. Incidentally, the number of
total pedestrians is fixed as 𝑁 = 240 to ensure a clear lane formation phenomenon from the visual perception.

Under the three cases of subgroup proportions, Fig. 12 illustrates the snapshots of bidirectional pedestrian flows over time.
Isolated individuals and pedestrian subgroups of 2, 3, and 4 members are also represented by black, red, blue, and yellow circles,
in which solid circles are those walking from left to right, and hollow ones are those walking in the opposite direction. For Case 1
composed entirely of isolated pedestrians, four distinct lanes can be found in the walkway scene at just 50 s, and they remain high
stability in the subsequent stage. If we now turn to Case 2, the situation seems a little chaotic at 50 s, and four lanes with non-uniform
continuity are gradually formed after 100 s. Compared with the former two cases, Case 3 presents more chaotic bidirectional flows,
and three lanes interspersed with partial oppositely moving pedestrians can be reluctantly recognized until 150 s. These results
preliminarily indicate that the presence of pedestrian subgroups interferes with the process of lane formation, and such disruption
degree becomes more significant as the subgroup proportion increases.

Furthermore, the quantitative analysis of the aforementioned phenomenon is beneficial for better understanding the effect of
pedestrian subgroups on lane formation. The order of crowds in lane formation can be characterized by Yamori’s band index 𝑌 (𝑡),
which measures the segregation of opposite pedestrian flows (Yamori, 1998), as given by this equation:

𝑌 (𝑡) = 1
𝐵

𝐵
∑

𝑏=1

|

|

|

𝑛𝑏1 (𝑡) − 𝑛𝑏2 (𝑡)
|

|

|

𝑛𝑏1 (𝑡) + 𝑛𝑏2 (𝑡)
(23)

Here, the walkway is divided into 𝐵 bands at equal intervals of width 𝑑𝑦 in the vertical direction, 𝑛𝑏2(𝑡) is the number of pedestrians
walking in one direction within band 𝑏, and 𝑛𝑏(𝑡) is the number of pedestrians walking reversely. That is, 𝑌 (𝑡) → 1 implies that the
13
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Fig. 12. Snapshots of bidirectional pedestrian flows over time under the three cases of subgroup proportions. The vertical direction represents different moments
of the simulations, and the horizontal direction indicates the three cases of subgroup proportions.

Fig. 13. Quantitative analysis of lane formation in bidirectional pedestrian flows under the three cases of subgroup proportions. (a) Yamori’s band index as a
function of time. (b) Average of the congestion level as a function of time. These solid lines and error bands denote the mean values and standard deviations
in 50 trials, respectively.

segregation is proximately perfect, while the opposite flows are extremely chaotic if 𝑌 (𝑡) → 0. We set 𝑑𝑦 = 0.5 m for the measurement,
as shown in Fig. 13(a), the separation time to reach saturation is shortened sequentially from Cases 1 to 3, but the order degree
of the final state becomes worse in turn. Besides, we are interested in the congestion level during lane formation, the average of
which in space is defined as below:

𝐶𝑙 (𝑡) = ⟨𝐶𝑙 (𝐱, 𝑡)⟩𝐱∈𝑆 (24)

where 𝐶𝑙(𝐱, 𝑡) is the congestion level at position 𝐱 belonging to the whole walking area 𝑆, regarding further details of the calculation
process see Feliciani and Nishinari (2018). Fig. 13(b) demonstrates that the congestion is notably exacerbated from Cases 1 to 3,
which reveals the negative impact caused by unstable lanes. In summary, a higher proportion of pedestrian subgroups makes the
lane formation more disordered and congested, due to the fact that subgroups with longer boundary space orthogonal to the walking
direction require more time to accomplish larger position offsets during avoidance interactions, which triggers a chain reaction for
the crowd behind (i.e., longer waiting times and more potential collisions) to further deepen the chaos at the macroscopic level.

5. Conclusion

In this paper, we discover the quantitative laws of spatial configurations of pedestrian subgroups at non-extreme densities, whose
mathematical forms are incorporated into a force-based model to simulate corresponding behaviors and phenomena. By achieving
numerical simulations in a walkway scene, the main conclusions are summarized below: (1) The preferred relative distance and
preferred relative angle between subgroup members both exhibit piecewise linear relationships with the local neighbor density,
which can also be extrapolated to relatively higher density levels. (2) This model reproduces the organized patterns of pedestrian
14
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subgroups more in accordance with empirical observations, and presents better simulation performance than existing subgroup
models. (3) In unidirectional flows, pedestrian subgroups barely affect fundamental diagrams at low density but promote the speed
and flow as the density increases. (4) In bidirectional flows, lane formation can be significantly interfered by the presence of
pedestrian subgroups, which further exacerbates the degree of disorder and congestion.

These findings from this study may facilitate the understanding of pedestrian subgroups and make contributions to several
ractical application areas. For the design of pedestrian facilities, it has been pointed out that subgroup factors need to be considered
hen addressing space requirements (Willis et al., 2004), thereby adjusting the design scheme by simulating pedestrian subgroups
ased on our model is conducive to reaching a higher level of efficiency and safety. Regarding the analysis of crowd behaviors,
he quantitative laws of spatial configurations can help computer scientists analyze the interaction between subgroup members
rom a large number of surveillance videos, which can serve important tasks such as the detection of abnormal crowds by security
epartments (Li et al., 2014; Gao and Liu, 2017). With respect to animation production, typical organized patterns of pedestrian
ubgroups are well presented by our model, which can be embedded in the animation production for more realistic visual rendering
nd motion control (Peters and Ennis, 2009). As a consequence, relevant studies on pedestrian subgroups are expected to bring
ncouraging inspirations into more potential fields.

It should be indicated that our model might have limitations in two aspects. First, the quantitative laws extracted from public
atasets just involve normal density levels and can also only be extrapolated to relatively higher (non-extreme) density levels.
rom this, our model is not suitable for reproducing subgroup behaviors at extremely high densities such as bottlenecks (Seyfried
t al., 2009), thereby future work may focus on exploring the quantitative laws of subgroup configurations (e.g., ‘‘river-like’’
ormations (Helbing et al., 2005)) at such densities. Nevertheless, it has been reported that subgroups are not salient in very high-
ensity crowds (Yang et al., 2018), whether these potential studies are necessary remains debatable. Second, although incorporating
he extracted quantitative laws into the model can more precisely describe the spatial configurations of pedestrian subgroups at
ifferent densities, it inevitably leaves the model with the issue of forcing individuals to adapt to preferred positions. From this, future
ork can attempt to improve this model from other perspectives (e.g., visual information (Moussaïd et al., 2011)) to help enhance its

nterpretability (e.g., explain how these preferred positions arise) and advance the understanding of subgroup behaviors to the next
tage. In spite of its limitations, this work certainly achieves a breakthrough in describing the laws of subgroup configurations from
ualitative to quantitative aspects, and also provides new insights for developing a more realistic and elaborate model to reproduce
ubgroup behaviors in crowd dynamics.
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